Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma.
نویسندگان
چکیده
PURPOSE To develop effective combination therapy against pancreatic ductal adenocarcinoma (PDAC) with a combination of chemotherapy, CHK1 inhibition, and EGFR-targeted radioimmunotherapy. EXPERIMENTAL DESIGN Maximum tolerated doses were determined for the combination of gemcitabine, the CHK1 inhibitor PF-477736, and Lutetium-177 ((177)Lu)-labeled anti-EGFR antibody. This triple combination therapy was investigated using PDAC models from well-established cell lines, recently established patient-derived cell lines, and fresh patient-derived xenografts. Tumors were investigated for the accumulation of (177)Lu-anti-EGFR antibody, survival of tumor-initiating cells, induction of DNA damage, cell death, and tumor tissue degeneration. RESULTS The combination of gemcitabine and CHK1 inhibitor PF-477736 with (177)Lu-anti-EGFR antibody was tolerated in mice. This triplet was effective in established tumors and prevented the recurrence of PDAC in four cell line-derived and one patient-derived xenograft model. This exquisite response was associated with the loss of tumor-initiating cells as measured by flow cytometric analysis and secondary implantation of tumors from treated mice into treatment-naïve mice. Extensive DNA damage, apoptosis, and tumor degeneration were detected in the patient-derived xenograft. Mechanistically, we observed CDC25A stabilization as a result of CHK1 inhibition with consequent inhibition of gemcitabine-induced S-phase arrest as well as a decrease in canonical (ERK1/2 phosphorylation) and noncanonical EGFR signaling (RAD51 degradation) as a result of EGFR inhibition. CONCLUSIONS Our study developed an effective combination therapy against PDAC that has potential in the treatment of PDAC.
منابع مشابه
Cancer Therapy: Preclinical Gemcitabine and CHK1 Inhibition Potentiate EGFR-Directed Radioimmunotherapy against Pancreatic Ductal Adenocarcinoma
Purpose: To develop effective combination therapy against pancreatic ductal adenocarcinoma (PDAC) with a combination of chemotherapy, CHK1 inhibition, and EGFR-targeted radioimmunotherapy. Experimental Design:Maximum tolerated doses were determined for the combination of gemcitabine, the CHK1 inhibitor PF-477736, and Lutetium-177 (Lu)–labeled anti-EGFR antibody. This triple combination therapy ...
متن کاملPRECLINICAL STUDIES EGFR and HER2 inhibition in pancreatic cancer
The aim of this study was to investigate the effect of lapatinib, a selective inhibitor of EGFR/HER2 tyrosine kinases, on pancreatic cancer cell lines both alone and in combination with chemotherapy. Two cell lines, BxPc-3 and HPAC, displayed the greatest sensitivity to lapatinib (IC50< 2 μM). Lapatinib also demonstrated some activity in three KRas mutated pancreatic cancer cell lines which dis...
متن کاملErlotinib prolongs survival in pancreatic cancer by blocking gemcitabine-induced MAPK signals.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers worldwide. Although many regimens have been used for PDAC treatment, the combination of the EGF receptor (EGFR) inhibitor erlotinib with gemcitabine has been the only molecular-targeted drug tested so far that has been superior to gemcitabine alone. The mechanism underlying this effective combinational regimen remains unk...
متن کاملDNA methyltransferase 3a modulates chemosensitivity to gemcitabine and oxaliplatin via CHK1 and AKT in p53-deficient pancreatic cancer cells
The aberrant expression of DNA methyltransferases (DNMTs) has been considered to be associated with pancreatic carcinogenesis and progression. DNMT3a is widely involved in cell proliferation and cell cycle progression in pancreatic ductal adenocarcinoma (PDAC) cells. However, its regulation of chemosensitivity to gemcitabine (GEM) and oxaliplatin (OXA) in p53‑deficient PDAC remains unclear. In ...
متن کاملGemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells.
The protein kinase checkpoint kinase 1 (Chk1) has been implicated as a key regulator of cell cycle progression and DNA repair, and inhibitors of Chk1 (e.g., UCN-01 and EXEL-9844) potentiate the cytotoxic actions of chemotherapeutic drugs in tumor cells. We have examined the ability of PD-321852, a small-molecule Chk1 inhibitor, to potentiate gemcitabine-induced clonogenic death in a panel of pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2014